Category Archives: planning

Plans for the New Year

Happy new year! What a wonderful winter holiday this has been. I think I really lucked out as a first year teacher getting a two-week break from school this year. It was been a period of relaxation and rejuvenation, as well as a celebration of family, friends, and good times. And it’s not even over yet!

As a result, I’ve had plenty of time to reflect upon my teaching experience so far, and as a result, I’ve developed some ideas and plans for the new year and next semester’s classes. I still have two weeks left to wrap up before finals week, so while I may implement some fresh ideas now, I might not get around to all of them until the new semester starts.

Here are some thoughts I’ve had, in no particularly order.

1) Change up the seating arrangement. This one I’m going to save until second semester because I don’t want to throw off the kids right before finals week because I swear I’ve read somewhere that a person tests best in an environment that he or she is familiar and comfortable with. Anyway, my plan is to arrange my students in pairs. Right now the kids are seated in small groups of four to facilitate collaborative learning, but the tables are simply too big for the kids to work across. I encourage them to stand up and move to the other side, but sometimes they’re reluctant to do that. Additionally, partner work has been more effective than group work in my classroom so far. I’d love to do more group work, but it’s a dream in progress, and I think the days would just run more smoothly with students in pairs.

2) Figure out a good system for warm-ups. I have to decide what I want my expectations to be for warm-ups, and I think they’re going to be different for my Geometry classes and my FST classes. For Geometry, I think I might have the students do a weekly warm-up sheet (a la Fawn Nguyen, etc.), but for FST I think I’m going to have them do a daily half-sheet that is either prepared by me with review of some Algebra skills that will be needed for the day’s Functions, Stats, or Trig concept OR that is some sort of writing task. Which  leads me to idea number 3.

3) Incorporate more writing into math class. Still have to think about this one, but I love, love, love it. The ability to communicate is so important in mathematics (and in life, as my mother would say).

4) Continue to build relationships with my students, my school, and the MG community. I just read this article, which was a good reminder to finally attend a basketball game, as well as organize another MG SNOWBOARD AND SKI CLUB!!!!!!! trip. I agreed to be the advisor of the new snowboard and ski team, and it has been mildly hectic, but fun, so far. The other day I realized I have a more experienced background in sports and recreation teaching than I do classroom teaching because I started teaching sailing lessons when I was 14.

Ok, that looks like a pretty good list. Now I just have to work on the enormous pile of grading that I have to do.

Advertisements

Leave a comment

Filed under planning

A Flop

Had a pretty big lesson flop today. I was frustrated at the end of the particular class, but I’ve thought about some things I can do to improve. Fortunately, I’m on an A-B schedule, so I get to re-do the lesson on Monday with another class. (My A-day kids always get the flops.)

I’m almost too embarrassed to write about the lesson because so much was wrong with it. I am tweaking every part of it for Monday. I thought about scraping the main task altogether, but it’s a good task that was ruined by poor implementation.

First, I am not going to assume the students remember how to do something even though I know they studied it last year. Flying through one example and saying, “This is familiar, right?” isn’t going to cut it. It turns out what they learned last year was a “trick” anyway, so I definitely need to do a better job explaining explicitly what is happening conceptually.

Second, I am not going to throw a handout at them and expect them to get to work. I am going to do a better job explaining the task and modeling how they should get started. I just read the phrase “model curiosity” while surfing some blogs, and I think it perfectly describes what I need to do at the beginning of a task.

Third, I’ve got to follow through on my behavior expectations. I had too many non-participating, off-task students. Worst of all, I let them behave that way. I let them get out of their assigned seats. This is my problem. I don’t like telling people what to do. I just want them to do the right thing. But I have to remember that high schoolers are still kids, and they still need guidance. Basically, I’ve got to toughen up. I’ve got to enforce my expectations.

Fourth, I want to do a better job structuring group work. I think this will also help me with my classroom management issues. I think I need to bring the groups back for a whole-class check-in more often. If there are four parts to the task, then I think I should bring everyone back together to go over each one before we move on to the next. In contrast, today I just said “do it” and consequently lost a lot of people, who never came back when I tried to go over everything at the end. So, on Monday, as students make progress on part 1, I’m going to bring us back together and have groups share. Then I’m going to explain part 2 and let them go. Then I’m going to bring them back again for a whole-class discussion on part 2. Then I’m going to explain part 3, and so on.

The tricky bit will be bringing everyone back. They’ll want to keep talking to their friends, but I need them to pay attention to me or whoever is sharing. I really need something to get everyone’s attention back. Maybe a timer, but students might work more slowly or more quickly than I anticipate. Another new teacher, who is in the English department, shared with me her method for bring everyone back. She simply says, “I need everyone back up here in 3.. 2… 1.” That sounds magical to me.

I can probably pull it off. I can do anything, right? I think what will work for me and for my students is to explain to them at the beginning what it’s going to look like. I will explain that I will let them work on part 1 for a bit, but that when I say “I need everyone back up here in 3, 2, 1” they need to stop where they are, turn to the front, and listen because we are going to share ideas at that point.

Overall, I think I need to be a better communicator. Specifically, I need to be more explicit with my directions and my expectations. More explicit with some of my explanations of content would also be good. Again, these are kids, not adults. They are learners, not experienced mathematicians. They are relying on me to communicate well.

1 Comment

Filed under classroom management, group work, planning

NYC trip and some thoughts on INBs

(Great acronyms in the title.)

I just got home from a fantastic four day visit with my sister in New York City. I live in a much smaller city myself, so I wasn’t sure what I would think of NYC, but I loved it! I loved all of the beautiful people, the amazing and delicious varieties of food, and the daily hustle and bustle. It was so much fun hanging out my sister and seeing where she lives and works. It was also my first time in the Big Apple, so of course I did all of the fun tourist stuff.

Central Park

Central Park

Brooklyn Bridge

Brooklyn Bridge

Statue of Lib

Statue of Lib

My sister and I also went to the Museum of Math, which I highly recommend. All of their displays are very interactive and let you experience and discover the math. They’re also super fun! We spent almost four hours there! Going with my sister was perfect because she has a great natural curiosity for math even though she went the finance and accounting route. She can solve all those fit-these-shapes-into-this-box and disconnect-this-metal-loop-from-this-other-metal-thing puzzles that I never have the mind for.

Of course the Math Museum has pi door handles.

Of course the Math Museum has pi door handles.

Overall, it was an awesome trip, but it’s so nice to be back home in spacious, natural, beautiful Wisconsin. #tmc14 took place over the same weekend, so while I was spending 24 hours each way on the train to and from NYC, I got to catch up via Twitter on all the excitement and mathematics happening in Oklahoma. Hoping to attend #tmc15 next summer!

So now that I’m home, I’m thinking about what sort of procedures I want in place this year in my classroom. I definitely want to do something with interactive notebooks (INBs), a popular topic in the MTBoS these days.

There are people with far more experience than me (which is zero) who write about INBs, so definitely check out Math=Love, Kalamity Kat, and Infinite Sums for great ideas and advice.

My reasoning for INBs is to help my students process information, organize their work, and have a resource that they can refer back to. Even when I student taught an Advanced Math 2 (like a Pre-Calculus Honors, maybe?) class where the kids furiously took notes on their own, I still think they needed help with organization and actually getting something useful out of their notes.

I’m planning on implementing a very low-maintenance version of INBs. Foldables are definitely NOT my thing and there’s no way I could keep track of a table of contents, let alone make my students do it. So really these are just going to be regular old notebooks. NBs, if you will.

Basically, my plan is to have my students put all the math they do into their notebooks. That’s… it. Maybe this is too unstructured (I’ll find out), but I really don’t care what the format is or how pretty it looks, I just want them to record the math they do in an organized manner and all in one place.

I’m going to require that they write the date and the topic on the top of each page. Below that they do the warm up. Below that they show the work for whatever activity or investigation we do. Below that we sum up the investigation or do notes or additional examples. Below that goes homework or some other sort of output. That’s the plan. I’ve requested some glue sticks so that the students can paste in any handouts. Yay, glue sticks.

It sounds simple. Hopefully it is. I plan to do regular notebook checks so that they know I’m serious about them picking up their pencils and doing the work. Accountability for them, accountability for me. Can you tell I’m a first year teacher? I’m constantly worried that they’re not going to take me seriously. Well, I guess I just better be serious when I need to be serious, right?

Along with the notebook, I’m requiring a folder for graded work or extraneous handouts. Hopefully I won’t be handing out much that won’t go in the notebook, but they need a place to store quizlets (my department’s name for our formative assessment), instruction sheets for projects, practice tests, etc.

Eh. I’m at the point where I have all these PLANS but have no idea how they’re actually going to work until the school year starts. The anticipation is killing me!

Leave a comment

Filed under notebooks, planning, travel

Desmos rocks my world

Last night I took the batteries out of my TI (83 plus!) graphing calculator to use in my bike lights. Sorry not sorry. Priorities.

In case you haven’t already discovered this fantastic resource, there is an online graphing calculator (and so much more) called desmos. Use it once and you will never want to use your old TI again. It’s easy to zoom in and out. It’s IN COLOR. If you are graphing multiple functions, you can make each one a different color. You can create sliders. And it is all FREE. Also be sure to check out all of the beautiful artwork while you’re there.

I won’t be ditching the TI for good because using it is a major part of my school’s current FST (aka the second half of Algebra 2) curriculum, which is fine. Students need to learn how to use TIs because right now they are the accepted technology for tests, both in the classroom and for standardized tests like the ACT and SAT.

Desmos is definitely worth incorporating into the classroom though. I used desmos with great success last summer when teaching summer school, and I think it’s great for doing investigations and creating visuals. That tiny, pixelated TI screen seems rather clunky and out-dated next to desmos, where students can really “see” the graphs and play around with them more easily. When I personally do math, I always use desmos if my laptop is with me. (Being significantly lighter than my laptop, the TI is more likely to be in my backpack on any given day.)

So I plan to use both desmos and the TIs in my classroom this fall. The TIs will be our go-to use-every-day type of calculator, but I’ll pull out the laptops as much as possible to use desmos for graphing investigations. I also hope the kids will come to appreciate desmos and start to use it at home or when they come to the math resource room during study hall. From summer school, I already have desmos investigations made up for quadratic functions and rational functions, but they were made hastily and need some improvement and some updating to more closely match my school’s FST curriculum. I’m excited! Now I just have to do some work and make these plans actually happen.

How do you incorporate desmos into your classroom?

Here are some examples I’ve found on the MTBoS:

Fawn’s Des-man which inspired the desmos team to create this awesome version of the project

Bob Lochel’s Desmos Filing Cabinet

Leave a comment

Filed under FST / Algebra 2, graphing, planning

My Job

In the fall I will be one of four new math teachers in my department, which is pretty unique. For two of us, it’s our first year teaching. There are five returning math teachers, which brings our department total to nine. I’ve met everyone except for two of the other newbies, and I think it’s going to be a really great group. My school has an AB block schedule with five blocks per day, and every other day the department has a common planning time, which is so awesome. I interviewed at a lot of schools this spring, and a common planning time was rare, so I lucked out on that one. I will definitely appreciate being able to plan and reflect with my coworkers regularly.

I’m teaching two classes this year: Geometry and Functions, Statistics, and Trigonometry, also known as FST. The other new teachers and I were presented with the four scheduling options, and the Geometry and FST schedule was my first pick, so I was happy about that.

The district is transitioning to Big Ideas Math (the middle school and Algebra classes already use it), and this year we are getting the Big Ideas Geometry book. I used Discovering Geometry while student teaching and thought that it was a good text, but I have absolutely zero knowledge about the Big Ideas approach. I’d never even heard of them. Do any of you use Big Ideas? What do you think? What have you heard about Big Ideas? Unfortunately, we won’t have the Geometry textbooks and resources until late July, so that makes planning a bit difficult. Luckily, I taught Geometry while student teaching so I have a base to build on.

FST is an interesting class. After Geometry, there are two possible tracks. A student may take Advanced Algebra, and then likely continue on with Pre-Cal and then AP Calc. The other option splits up the Advanced Algebra topics into two classes: Algebra 2 the first year and FST the second year. The purpose seems to be to cover the material at a slower pace, do more review, and cover more topics. So most of my FST kids will be seniors with a  few juniors in there too.

I’ve already met with the other FST teacher this summer, and he kindly gave me copies of the “text” and has told me about the course in general. I say “text” because there is no official textbook for this course, rather some teachers several years ago came up with their own curriculum for this class, so I have the course notes and homework assignments in a big binder. Fortunately, he also gave me a copy of the Discovering Advanced Algebra textbook so I can use their investigations and such. I will also be scouring the MTBoS for good activities,  problems, and investigations.

I feel lucky to be in what seems to be a very supportive and collaborative department. My FST coworker and I are meeting again next week, and he seems very open to new ideas and suggestions and genuinely wants to make the course better. I have a good balance of freedom and structure: I can deliver the content in whatever way works for me as long as we teach the same thing at the same time, use common quizlets (the math department’s formative assessment) and tests, and have the same grading policy. The students’ schedules get shuffled around at semester, so some of his students will come to me and vice versa. I would prefer having the same students all year because switching it up will mess up the classroom culture that we’ve worked to create, but oh well.

So I’ll be working on FST until late July when the Geometry team starts to get together. Lots to think about!

2 Comments

Filed under FST / Algebra 2, Geometry, planning